

Специализированный семинар «День Технологий QNX»

Андрей Сеньков, СВД Встраиваемые Системы Аппаратные платформы систем реального времени

Процессорная архитектура и аппаратная платформа

Процессорная архитектура

Архитектура команд

Режимы адресации, регистры, машинные команды, и пр.

Примеры: ARM, MIPS, PowerPC, x86 ...

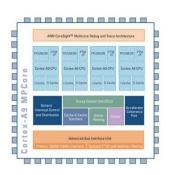
Архитектура процессорного ядра

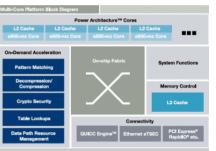
Организация конвейеров, кэш, взаимодействие между блоками (ALU, FPU, ...) и пр.

Примеры: ARM Cortex-A9, PowerPC e500, MIPS32, Intel Atom ...

Аппаратная платформа

Контроллеры, системы на кристалле (SoC)


Производители: Freescale, TI, Intel, Atmel, Элвис ...


Процессорные модули

Производители: Advantech, Fastwel, НКБ ВС ...

Законченные устройства, панельные станции, моноблоки

Примеры: НКБ ВС «МУПД», АТРИ «Орион», BlackBerry PlayBook, ...

Целевые архитектуры QNX

QNX2 – 1980-е годы, процессоры Intel 286

QNX4 - POSIX OCPB для Intel x86 (386 и выше) / 3ОСРВ КПДА.0002-01

QNX Neutrino RTOS

Intel x86 (SMP, APIC, Fastboot ...)

RISC архитектуры (процессорные ядра с блоком ММU)

ARM (apx. v4-v6, ARMv7, MPCore ...)

MIPS (MIPS32, MIPS64, BE/LE, SMP ...)

PowerPC (SMP, PPC SPE, ...)

SH4 (SMP ...)

сертификат соответствия МО №1740 от 20.12.2011 для АС класса защищенности до 1Б

Целевые архитектуры 30СРВ «Нейтрино»: Intel x86 ARM MIPS PowerPC

Поддержка платформы в QNX

Единый инструментарий QNX SDP

Уровень среды исполнения

Ядро и системные сервисы QNX

Уровень QNX BSP

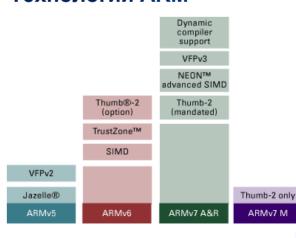
Аппаратура

Целевая архитектура ARM

ARM

Advanced RISC Machine

- Лицензируемая RISC архитектура
- Множество производителей с широкой линейкой ядер и контроллеров различного назначения
- Низкое энергопотребление, высокая степень интеграции периферии
- Технологии и расширения (Thumb, Jazelle, Vector Floating Point, TrustZone, NEON ,...)
- Лидирующие позиции на рынке мобильных устройств (планшеты, смартфоны, ...)
- Поддержка в QNX Neutrino ARM ядер с MMU
- Поддержка в QNX архитектур ARM:
 - ARM LE (v4-v6): ARM7, Strong ARM, ARM9, XScale, ARM11
 - ARM LE v7: Cortex-A8, Cortex-A9, MPCore


Производители ARM контроллеров

Технологии ARM

QNX на ARM процессорах

Пакеты поддержки платы (BSP) на сайте QNX: http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

Board	Processor	
Freescale i.MX6Q Sabre Lite	Cortex A9	
Freescale i.MX6Q Sabre ARD/Sabre AI	Cortex A9	
Freescale i.MX6Q Nitrogen6x	Cortex A9	
Freescale i.MX6Q Sabre Board for Smart Devices	Cortex A9	
Freescale i.MX53 Quickstart	Cortex A8	
Freescale i.MX53 Sabre Al	Cortex A8	
Freescale i.MX53 EVK	Cortex A8	
Freescale i.MX51 EVK	Cortex A8	
Freescale i.MX31 ADS	ARM1136JF-S	
Freescale i.MX31 PDK	ARM1136JF-S	
Freescale i.MX35 PDK (3DS)	ARM1136JF-S	
Freescale i.MX21 ADS	ARM926EJ-S	
Freescale i.MX25 3DS (PDK)	ARM926EJ-S	
Freescale i.MX27 ADS	ARM926EJ-S	
Freescale i.MX28 EVK	ARM926EJ-S	

Board	Processor
Nvidia Tegra2	Cortex A9
Toshiba TMPA970C20XBG (Capricorn-H)	Cortex A9
Marvell Armada PXA2128 Qseven BSP	ARMv7 MP
ISEE IGEPv2 Platform	Cortex A8
IBV/PHYTEC phyCORE-iMX35	ARM1136JF-S
Centrality Titan EVB	ARM1136EJ-S
Atmel AT91SAM9RL64-EK	ARM926EJ-S
Atmel AT91SAM9260-EK	ARM926EJ-S
Atmel AT91SAM9261-EK	ARM926EJ-S
Atmel AT91SAM9263-EK	ARM926EJ-S
Atmel AT91SAM9M10-EK	ARM926EJ-S
Atmel AT91SAM9G45-EKES	ARM926EJ-S
Centrality Atlas II EVB	ARM926EJ-S
Fujitsu Jade EVB	ARM926EJ-S

QNX на ARM процессорах TI

Пакеты поддержки платы (BSP) на сайте QNX: http://community.gnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

Board	Processor
Texas Instruments OMAP 4460 Panda ES	Cortex A9
Texas Instruments OMAP 4430 Panda	Cortex A9
Texas Instruments AM335 Beaglebone	Cortex A8
Texas Instruments AM335x EVM	Cortex A8
Texas Instruments AM335x Starter Kit	Cortex A8
Texas Instruments AM335x Industrial Development Kit	Cortex A8
Texas Instruments AM3517 EVM	Cortex A8
Texas Instruments AM3505 EVM	Cortex A8
Texas Instruments DM644x EVM	Cortex A8
Texas Instruments DRA52x EVM	Cortex A8
Texas Instruments J3 EVM	Cortex A8
Texas Instruments DRA6xx EVM and DM814x EVM	Cortex A8
Texas Instruments DRA6xx and DM811x Jacinto 5 ECO EVM	Cortex A8
Texas Instruments OMAP 3503 EVM	Cortex A8
Texas Instruments OMAP 3515 EVM	Cortex A8
Texas Instruments OMAP 3525 EVM	Cortex A8
Texas Instruments OMAP 3530 Beagle	Cortex A8
Texas Instruments OMAP 3530 Mistral	Cortex A8
Texas Instruments 3730 Beagleboard-xM	Cortex A8

Board	Processor	
Texas Instruments AM1808 EVM	ARM926EJ-S	
Texas Instruments DM355 EVM	ARM926EJ-S	
Texas Instruments DRA446 EVM	ARM926EJ-S	
Texas Instruments DRx459, DRx457 EVM	ARM926EJ-S	
Texas Instruments OMAP-L137	ARM926EJ-S	
Texas Instruments OMAP-L138	ARM926EJ-S	
Texas Instruments OMAP 2420 SDP	OMAP 2420	
Texas Instruments OMAP 5905 OSK	OMAP 5905	
Texas Instruments OMAP 5912 OSK	OMAP 5912	

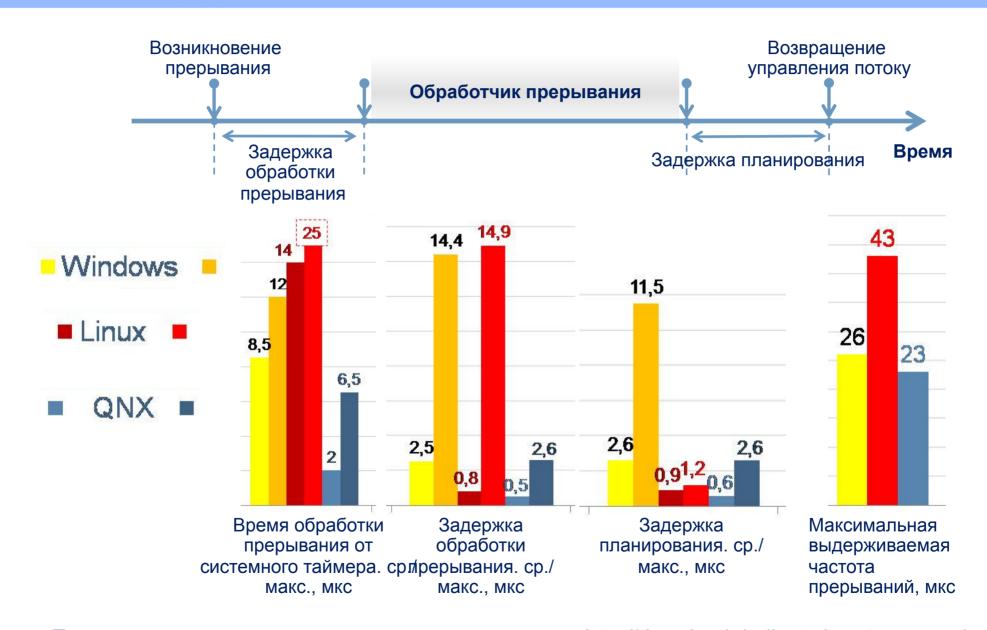
QNX на ARM в сравнении

По отчетам Dedicated Systems Experts http://es2.dedicated-systems.info/

Платформа Beagle-XM Board Rev C

- ✓ Texas Instruments DM3730 Digital Media Processor
- ✓ ARM Cortex A8, 1GHz
- ✓ L1 Cache: 32KB instruction /32KB data
- ✓ L2 Cache: 64KB
- ✓ 512MB RAM at 166MHz

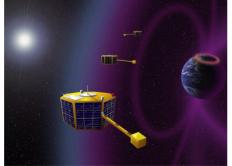
OCPB

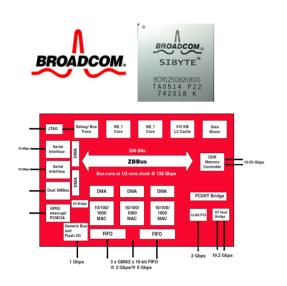

- 1. QNX Neutrino RTOS 6.5.0
- 2. Windows Embedded Compact 7
- 3. ОС на базе ядра Linux 2.6.33.7.2 с патчами PB v.30

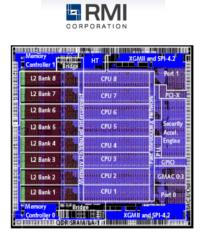
QNX на ARM в сравнении

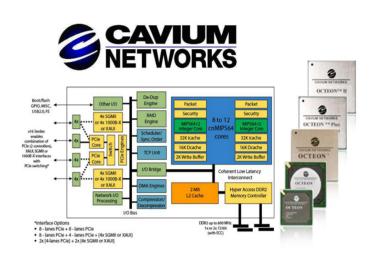
Целевая архитектура MIPS

- MIPS Microprocessor without Interlocked Pipeline Stages
- Лицензируемая RISC архитектура MIPS32 и MIPS64.
- Раздельные кэш команд и данных, плюс максимальное использование конвейеров.
- Дополнительные наборы инструкций (MIPS-3D, MDMX (MaDMaX), MIPS16e, MIPS MT)
- Поддержка в QNX архитектур MIPS32 и MIPS64 Little-endian / Big-endian
- Высокопроизводительные многоядерные процессоры для телекоммуникаций (Cavium, Broadcom, RMI)
- > Отечественные серии процессоров спец. назначения









Процессоры MIPS в QNX

Высокопроизводительные контроллеры для сферы телекоммуникаций

Отечественная платформа «МУЛЬТИКОР» www.multicore.ru

Система на кристалле, включающая RISC и DSP-ядра Области применения:

- Радиолокационные и гидроакустические системы
- Связь и телекоммуникация, промышленный контроль
- Цифровое телевидение

QNX BSP для отладочных модулей MC12, MC24

Целевая архитектура PowerPC

PowerPC"

- PowerPC (Power Performance Computing.) RISC архитектура, разработанная альянсом Apple, IBM и Motorola (AIM)
- Одна из первых архитектур, поддерживаемых QNX Neutrino
- Суперскалярная обработка команд
- Линейка производительных промышленных процессоров Freescale PowerQUICC и QorlQ
- > Поддержка в QNX архитектур PPC BE, PPC BE SPE

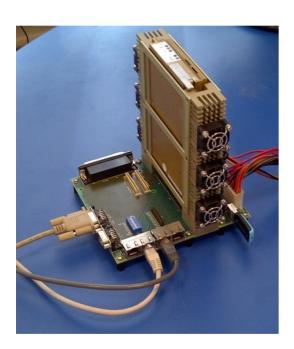
QNX на PPC процессорах Freescale

Пакеты поддержки платы (BSP) на сайте QNX: http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

Board	Processor	
Freescale P5020-DS	QorlQ P5020	
Freescale P4080DS-PA	QorlQ P4080	
Freescale P3041DS	QorlQ P3041	
Freescale P2041RDB-PB	QorlQ P2041	
Freescale P2020DS-PA	QorlQ P2020	
Freescale P2020RDB-PA	QorlQ P2020	
Freescale P2020RDB-PCA	QorlQ P2020	
Freescale P2010RDB-PA	QorlQ P2010	
Freescale P1025-TWR	QorlQ P1025	
Freescale P1020RDB-PC	QorlQ P1020	
Freescale P1020RDB-PA	QorlQ P1020	
Freescale P1010RDB	QorlQ P1010	
Freescale P1013DS	QorlQ P1013	
Freescale P1021MDS	QorlQ P1021	
Freescale P1022DS	QorlQ P1022	

PowerQUICC

Board	Processor
Freescale MPC8308-RDB	MPC8308
Freescale MPC8313E RDB	MPC8313E
Freescale MPC8323E RDB	MPC8323E
Freescale MPC8349E MDS	MPC8349E
Freescale MPC8360E MDS	MPC8360E
Freescale MPC8379E RDB	MPC8379E
Freescale MPC85x0 ADS	MPC8540, 8555, 8560
Freescale MPC8536 DS	MPC8536
Freescale MPC8548 CDS	MPC8548
Freescale MPC8572 DS	MPC8572
Freescale MPC8641D HPCN	MPC8641D
Freescale Lite5200 EVB	MPC5200, 5200B
Freescale Lite5200B and Media5200	MPC5200B
Freescale Total5200/Lite5200EVB	MPC5200, 5200B
Freescale 8260 ADS	MPC8260
Freescale CDS MPC85xx	MPC8541, 8548, 8555



Пример аппаратной платформы на PowerPC

Модуль универсального процессора данных МУПД-3U/2G на процессоре Freescale P3041

Производитель: ОАО «Научно-конструкторское бюро вычислительных систем», г. Таганрог

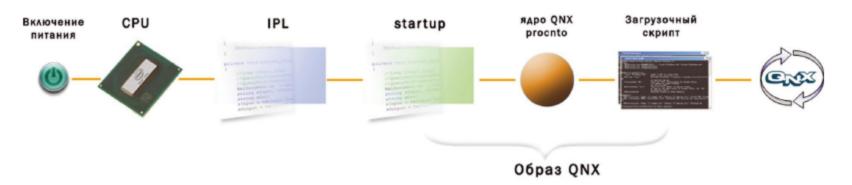
Основные характеристики	
Тип процессора (архитектура)	P3041 (PowerPC e500)
Количество вычислительных ядер в микропроцессоре	4
Тактовая частота работы микропроцессора, ГГц	1,2
Кэш-память L1I/L1D/L2/L3 ядра микропроцессора, Кбайт	32/32/128/1024
Емкость динамического ОЗУ, Мбайт/тип/частота	1024/DDR3L/600
РПЗУ начальной загрузки (тип), Мбайт	512 (NOR FLASH)
РПЗУ программ (тип/интерфейс), Гбайт	от 4 до 64 (SSD/SATA2)
Конструктивное исполнение модуля (стандарт)	кондуктивное, VPX3U
Потребляемая мощность, Вт, не более	18
Основные внешние интерфейсы	
PCI Express (P1, VITA 46.4, VITA 46.9)	2 (x4)
Ethernet 10/100/1000 (P1, P2)	4
RS-232/RS-4XX (P1)	2
USB 2.0 (P1)	1 host
I2C (подсистемы IPMI, P0)	2

Пакет поддержки модуля МУПД-3U/2G для QNX Neutrino / 3OCPB «Нейтрино» обеспечивает выполнение задач высокопроизводительной вычислительной и логической обработки данных в реальном времени

Целевая архитектура Intel x86

- Исторически первая платформа для ОСРВ QNX
- Стандартизация загрузки и установки ОС обеспечивается BIOS
- Большой спектр как высокопроизводительных, так и бюджетных решений
- > Проста для разработки демонстрационного проекта под QNX
- Удобна для разработчиков, имеющих опыт создания проектов на x86 и начинающих проект под QNX
- ➤ Есть возможность полнофункционального тестирования QNX под x86 в одном из средств виртуализации (VMware Workstation, Microsoft Virtual PC, QEMU) без необходимости приобретения специализированной аппаратуры
- Технологии SMP, APIC, FastBoot
- > Простой перенос Open Source проектов

Процессоры Intel Atom в QNX


Intel Atom — линейка микропроцессоров архитектуры x86 с низким энергопотреблением.

- Множество процессорных модулей различного исполнения
- Потребляемая мощность от 0.65 до 13 Вт
- Серии из двух процессорных ядер и частотой >2 ГГц
- Техпроцесс 45 нм, переход к процессу 32 нм
- > «Северный» и «южный» мосты в одном чипе Intel NM10 или Intel SCH
- > Конкуренция с ARM-контроллерами на рынке мобильных устройств
- > Поддержка в QNX серий Z5xx, N4xx, D5xx, E6xx
- Технология быстрой загрузки FastBoot в QNX Neutrino

Технология быстрой загрузки FastBoot на модулях с Intel Atom в QNX Neutrino

Оценка и область применения платформ

Общая оценка характеристик

Платформа / Характеристика	ARM	MIPS	PPC	x86
Производительность	***	***	***	****
Энергопотребление	****	***	***	**
Интеграция периферийных устройств	****	***	***	**
Прототипы BSP для QNX Neutrino	****	**	***	***
Доступность ПО (open-source, 3-rd party)	***	***	***	****

Область применения (по данным QNX Software Systems)

General Embedded

ARM:

AT91SAM9260/9261/9263/9RL64/9G45, DM355,644x,DRA446,DRx459,DRx457, DRA52XOMAP 2420, 3503, 3515, 3525, 3530, L137OMAP 3505, 3517, L137, Jacinto3i.MX21, i.MX25, i.MX27, i.MX31, i.MX35, i.MX51

X86:

SOM6760, PCM 9375,nanoETXexpress-SP CoreExpress, Crown Beach CRB, x86 bios, Tolapai, Geode LDXB800, xw4600, E5500, PowerEdge 840, D820

Netcom

MIPS:

Cavium CN57xx XLR732 BCM91x80, BCM91250, BCM91125

PowerPC:

QorlQ P2020, P4080 MPC85x0, 8536, 8544DS, 8548, 8572, MPC8313E, 8323E, 8349E, 8360EMPC8641D Virtex-II Pro ML300, Virtex-4 ML403, Virtex 5 ML507 AMCC 405ex, 460ex, 440EPx

Automotive

ARM:

Centrality Atlas II, Centrality Titan, i.MX21, i.MX25, i.MX31, i.MX35, i.MX51 Jade, Jade-D, Dove, DM355, DM644x,DRA446,DRx459, DRx457,DRA52X, OMAP 2420, 3503, 3515, 3525, 3530 OMAP 3505, 3517, Jacinto3

PowerPC:

Lite5200B, Media5200, MPC5121E, 5125E

Выбор платформы и цикл разработки

«СВД Встраиваемые Системы» поможет с выбором аппаратуры и разработкой ПО для устройств на базе QNX / 30СРВ «Нейтрино»

Спасибо за внимание.

СВД Встраиваемые Системы

www.kpda.ru forum.kpda.ru

sales@kpda.ru support@kpda.ru

Центральный офис:

196066 Санкт-Петербург

Московский проспект, 212А

тел.: (812)373-41-17

факс:(812)373-19-07

Технический офис:

191014 Санкт-Петербург

ул.Госпитальная, д.3

тел./факс:(812)578-02-45