ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ИНСТРУМЕНТАЛЬНЫЕ СИСТЕМЫ

Разрешите представить: RTWin

Константин Макарьев

До недавнего времени бытовало мнение о том, что российский рынок интегрированных пакетов автоматизации пуст. Статья рассматривает некоторые аспекты выбора базового программного обеспечения при решении задачи автоматизации производства и представляет программный пакет для создания распределенных систем контроля и управления в ОС QNX.

Платформа – это 50 % успеха

Задачу автоматизации производства каждый вправе решать по-своему. Безусловно, в каждом отдельном случае требования, предъявляемые к системам контроля и управления (СКУ) технологическими процессами, различны. Возможно, в некоторых случаях какая-либо из Windows-платформ способна справиться с поставленной задачей, однако создание действительно распределенной иерархической СКУ реального времени возможно только на базе соответствующей операционной системы. Именно операционная система призвана обеспечить тот самый детерминизм в поведении СКУ, о котором говорят все. Операционная система QNX, разработанная канадской фирмой QNX Software Systems Ltd., является одной из наиболее широко используемых для этих целей ОС. Объем продаж ОС QNX в мире составил около 6% от общего рынка операционных систем. Модульная архитектура ОС на основе микроядра и высокопроизводительный компактный графический интерфейс Photon позволяют использовать компьютеры с ограниченными аппаратными ресурсами. Скажем, трудно себе представить ПК 486DX4-100 с ОЗУ 8 Мбайт под Windows 95, управляющий печью для подогрева заготовок прокатного стана. Под управлением ОС QNX реально работающая СКУ в подобной конфигурации – не миф, а событие де-факто. Добавьте к этому встроенную поддержку сети, обеспечивающую эффективное использование ресурсов компьютеров, объединенных в локальную сеть, мощные средства разработки приложений, в том числе и графических, наличие СУБД и гибкое управление прерываниями и приоритетами, и любой разработчик придет в ужас от мысли, что до сих пор не использовал все это.

«Да», — согласятся многие и возразят: «но это более дорогое решение». В корне не согласен с ними. В этом случае следует рассматривать стоимость проекта автоматизации в целом: проектирование, аппаратное обеспечение, ОС, программные средства (в т. ч. специализированные пакеты), стоимость труда программистов. Во многих случаях итоговая стоимость решения на базе ОС QNX будет не выше, а даже ниже (подразумевается использование только лицензионного программного обеспечения). Кроме этого, разве сравнимы по значимости затраты на приобретение программного обеспечения и ущерб от непредсказуемости поведения СКУ, разработанной на базе более распространенной и дешевой ОС? Но остановимся на этом. Убеждение использовать ОС ONX в качестве базовой ОС при разработке СКУ не является целью данной статьи. Речь пойдет о вещах, гораздо более понятных и близких любому разработчику, — о специализированных пакетах для разработки

«Чего тут думать? Трактор нужен»

Примерно так думает человек, стоя с лопатой у края огромного поля, которое ему предстоит вскопать. «Но где его взять?». И оглядывается по сторонам. А там выстроились в ряд претенденты. «Что же предпочесть?», — задает себе человек следующий вопрос. Конечно, можно взять дорогой и мощный агрегат иностранного производства, который умеет все (по крайней мере, так сказано в инструкции все на том же иностранном языке). Что стоит дорого, так это не беда, один раз можно себе позволить. Зато характеристики у него великолепные: и захват широкий, и глубина подходящая. Но вот беда - он разворачиваться сам не приспособлен. Один проход сделал и встал. Надо думать, как его развернуть. Другое дело - наш российский мотоблок. Инструкция на понятном языке и повернуть его можно всегда куда угодно. Функциональность чуть ниже, зато и цена совершенно другая.

Примерно так же думает разработчик, перед которым стоит задача автоматизации производства. И оглядывается в поисках подручных средств. Итак, альтернативы QNX он не видит. Что же может предложить рынок программных средств для проектирования СКУ на базе ОС QNX? Выбор на самом деле не так велик и представлен в основном импортными пакетами. Это SCADA-пакеты RealFlex (BJ Software Systems, США), Sitex (Jade Software, Англия) и пакеты визуа-

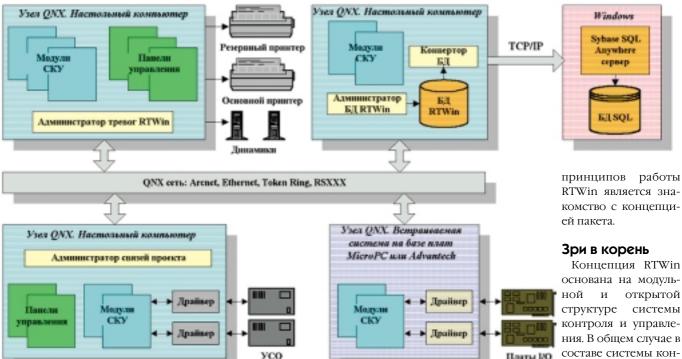


Рис. 1. Типовая структура СКУ в RTWin

лизации — Sammi (Kinesix, США), Tilcon Real-Time Developer (Tilcon Software, Kaнада) и Process Vision (Comdale Technologes, Канада). Дабы не быть обвиненным в плагиате, приведу лишь ссылку на публикацию «Интегрированные пакеты АСУ ТП в ОС QNX» в первом номере журнала «Современные технологии автоматизации» за 1996 год. Обсуждение достоинств и недостатков того или иного пакета и их сравнительная характеристика также не укладываются в рамки этой статьи. Поэтому разрешите представить разработку российской фирмы «SWD Системы Реального Времени» пакет RTWin.

RTWin представляет собой мошный и гибкий инструмент для проектирования СКУ технологическими процессами, предоставляющий разработчику все возможности для создания модульной распределенной и масштабируемой СКУ, функционирующей в реальном масштабе времени. Пакет относится к классу систем автоматизированного проектирования СКУ - по международной классификации Computer Aided Con trol System Design (CACSD). RTWin paspaботан как универсальная система, которая может найти применение в различных отраслях промышленности. Как интегрированный пакет, обеспечивающий полный цикл разработки и функционирования СКУ, RTWin состоит из

• среды разработки, включающей редакторы ресурсов для проектирования СКУ;

• среды исполнения, включающей администраторы соответствующих ресурсов и обеспечивающих функционирование СКУ.

RTWin в полной мере использует все преимущества ОNX - эффективной и надежной сетевой ОС. В качестве среды визуализации используется графический интерфейс Photon microGUI. Следует отметить, что RTWin - единственный пакет данного класса для QNX, разработанный в России.

Появление нового программного продукта обусловлено, прежде всего, дефицитом на рынке пакетов подобного класса и их относительной дороговизной. Необходимо отметить также, что RTWin динамично развивается и за относительно короткие сроки своего существования уже успел себя положительно зарекомендовать в ряде применений. Использование RTWin является гарантией того, что разработанную СКУ не придется модифицировать в связи со сменой версии графического интерфейса. И, конечно, нельзя не обратить внимание на то, что пакет имеет добротно сделанную документацию на русском языке

Было бы неразумно ограничиться только констатацией основных возможностей и технических характеристик. Поэтому те, у кого нет времени для того, чтобы прочитать статью полностью, могут пропустить следующий раздел. Но при этом они рискуют, потому что все же ключом для понимания

основана на модульи открытой структуре системы контроля и управления. В общем случае в составе системы контроля и управления

технологическим процессом можно выделить функционально законченные части – модули. Эти модули взаимодействуют между собой путем обмена данными. Таким образом, можно представить СКУ как совокупность модулей. имеющих входы и выходы и связанных между собой информационными потоками (рис. 1). RTWin исходит именно из такой модели представления СКУ и дает разработчику возможность проектировать, оперируя понятиями модулей системы и потоков данных. Поток данных представляет собой последовательность сообщений определенной длины и структуры. Модули в зависимости от своего функционального назначения могут быть отнесены к одному из следуюших типов.

Объект реализует заданный на стадии разработки алгоритм. Это наиболее универсальный тип модуля, он позволяет решить широкий спектр задач, среди которых математические модели процессов, работа с устройствами ввода/вывода и файлами, подготовка данных для отображения, организация связи с другими программами и т. д. Каждый объект реализован как самостоятельная загружаемая и исполняемая задача в среде многозадачной ОС QNX. Для каждого объекта генерируется полный исходный текст на языке программирования Си в стандарте ANSI C.

Панель управления реализует графический интерфейс с оператором СКУ. Внешний вид панели управления создается с использованием набора графических примитивов. Каждый графи-

ИНСТРУМЕНТАЛЬНЫЕ СИСТЕМЫ

ческий примитив имеет определенный набор ресурсов (например цвет, координаты, размеры, форму курсора, текстовую строку и т. д.). Любое изменение состояния технологического процесса может быть отображено посредством изменения тех или иных ресурсов. Поступающие на вход панели управления данные можно представить в виде текстовых строк, графиков и диаграмм. Кроме того, могут открываться дополнительные окна, меняться цвет, размеры и координаты графических примитивов, что позволяет получить эффект анимации. На панели могут быть размещены различные органы управления: кнопки, сдвижки (слайдеры), линейки прокрутки и т. п. Для каждого органа управления может быть задан в виде числового значения уровень доступа оператора.

Объект - PhAB приложение предназначен для интеграции в состав СКУ произвольного приложения Photon, coзданного с помощью построителя приложений Photon Application Builder.

Шлюз предоставляет возможность передавать данные между одновременно работающими СКУ.

Каждый объект и панель управления может иметь несколько копий в рамках одной СКУ. На входах и выходах модулей могут располагаться точки дополнительной обработки данных, которые позволяют одновременно с передачей данных выполнять с ними такие операции, как сохранение в оперативной БД, проверка условий возникновения тревог, просмотр в виде таблиц и графиков.

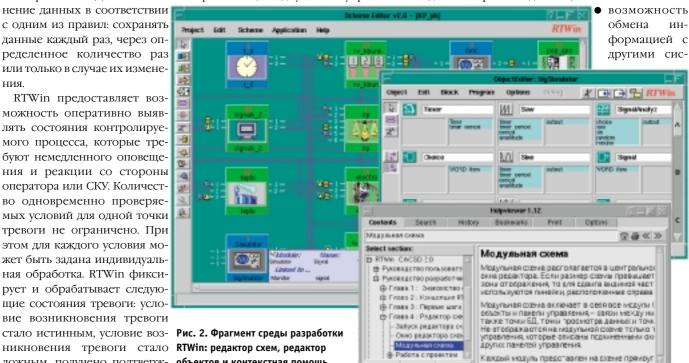
Оперативная БД обеспечивает сохранение данных в соответствии

с одним из правил: сохранять данные каждый раз, через определенное количество раз или только в случае их изменения

RTWin предоставляет возможность оперативно выявлять состояния контролируемого процесса, которые требуют немедленного оповещения и реакции со стороны оператора или СКУ. Количество одновременно проверяемых условий для одной точки тревоги не ограничено. При этом для каждого условия может быть задана индивидуальная обработка. RTWin фиксирует и обрабатывает следующие состояния тревоги: условие возникновения тревоги никновения тревоги стало RTWin: редактор схем, редактор ложным, получено подтверж- объектов и контекстная помощь дение сигнала о возникнове-

нии тревоги, отсутствие подтверждения в течение заданного времени и прошло заданное время с момента возникновения тревоги. Оперативные данные в RTWin могут быть представлены с помощью специальной утилиты в виде таблиц и графиков.

Создаваемые в RTWin СКУ базируются на принципе «авторизованного» вмешательства. Этот принцип подразумевает принадлежность любого вмешательства в работу СКУ конкретному человеку. Кроме того, RTWin позволяет организовать разграничение прав доступа различных операторов (пользователей) к информации, предоставляемой СКУ, и элементам управления.


Таким образом, модульная архитектура создаваемых в RTWin СКУ обуславливает такие важные практические свойства как-

- многозадачность и распределенность — модули СКУ могут быть размещены на различных компьютерах - узлах локальной сети, что дает возможность их параллельного выполнения и позволяет оптимальным образом использовать аппаратные ресурсы вычислительной системы;
- многопользовательский режим при распределении панелей управления СКУ по различным узлам сети появляется возможность одновременной работы нескольких операторов (пользователей);
- масштабируемость с помощью RTWin можно создавать СКУ любой сложности: от простейших, содержащих одну панель управления и один-

- два объекта и работающих на одном компьютере, до сложных многопользовательских систем, состоящих из десятков модулей, работающих в локальной сети:
- конфигурируемость RTWin дает возможность легко изменять состав запускаемых модулей и их распределение по узлам локальной сети:
- наращиваемость используя RTWin, можно создать достаточно сложную СКУ методом поэтапного наращивания выполняемых функций. Можно начать с простого, создать «скелет» системы, а затем постепенно добавлять новые модули. Такой способ очень эффективен, так как при этом на каждом шаге есть возможность запустить систему и произвести отладку.

Понятие открытой архитектуры подразумевает:

• доступность расширения функциональных возможностей системы разработчиком — очевидно, что невозможно заранее предусмотреть в CACSD-пакете все функциональные возможности по организации интерфейса с оператором и обработке данных, которые могут когда-либо понадобиться разработчику. Особенно это актуально для универсальной системы, рассчитанной на широкую область применения. Поэтому в RTWin предусмотрены механизмы расширения разработчиком функциональных возможностей по организации интерфейса с оператором (объект-PhAB приложение) и по обработке данных;

темами - созданная в RTWin СКУ имеет возможность обмена информацией как с другими СКУ (используя шлюзы), так и с любыми внешними по отношению к RTWin системами программами.

Р од А тО

Разработка СКУ ведется в режиме визуального проектирования. В среде разработки СКУ

представляется в виде модульной схемы, включающей модули и связи между ними, а также точки дополнительной обработки данных (рис. 2). Проектировщик создает СКУ путем поэтапного наращивания. На первом этапе определяются структуры данных и объекты. Алгоритмы работы объектов залаются в виде совокупности блок-функций. Библиоблок-функций RTWin содержат более двадцати наиболее распространенных алгоритмов обработки и моделирования данных, включающих ПИД-регулирование и генератор сигналов. Проектировщик может создавать свои собственные блокфункции и библиотеки, а также включать в объпользовательские процедуры на языке программирования Си. Таким образом, может быть создан расширенный набор блок-функций и библиотек, что позволяет адаптировать RTWin для решения определенного класса задач в какой-либо специальной области, а также существенно ускорить и облегчить процесс описания алгоритмов работы объектов.

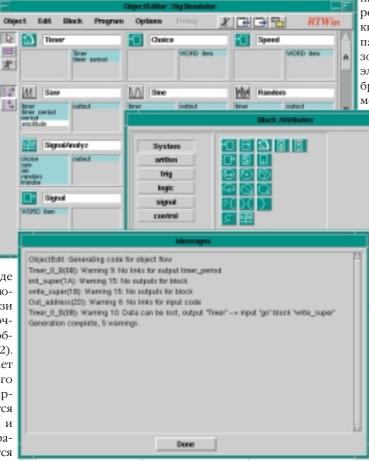
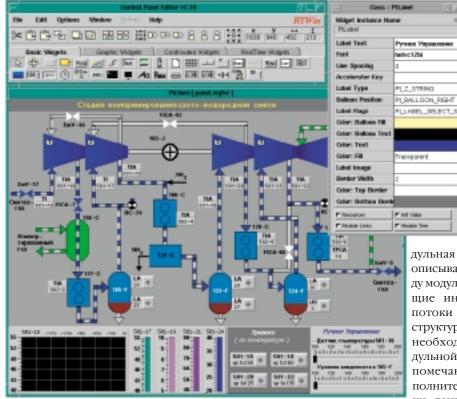



Рис. 3. Фрагмент среды разработки RTWin: редактор объектов, сообщения при генерации исходных текстов, системная библиотека блок-функций

Следующий этап пре- Рис. 4. Фрагмент среды разработки RTWin: редактор панелей управления в дусматривает создание процессе создания рабочего места оператора СКУ

панелей управления. Графический редактор RTWin позволяет в короткие сроки нарисовать внешний вид панелей управления за счет использования библиотек графических элементов. Разработчик может выбрать требуемый графический элемент из широкого ряда кнопок раз-

Block

Function

Done

Cancel

личного назначения, индикаторов и диаграмм, а также графиков, списков и т. п. (рис. 3). Библиотеки графических элементов, так же как и библиотеки блок-функций, расширяемы. После создания внешнего вида задается функциональность панели управле-

ния, т. е. данные, поступающие на входы панели управления, связываются с ресурсами графических элементов. На этом этапе предусматривается описание подчиненных окон и окон диалога для организации каскадного интерфейса. Таким образом, даже создание сложного интерфейса с оператором не требует от разработчика написания ни одной строчки кода. При создании панелей управления можно

> предусмотреть разграничение прав доступа операторов к элементам управления.

Далее из полготовленных объектов и панелей управления непосредственно COздается мо-

дульная схема СКУ и описываются связи между модулями, обозначающие информационные потоки определенной структуры (рис. 4). При необходимости на модульной схеме точками помечаются места дополнительной обработки данных и задается конфигурация для каждого вида обработки,

ИНСТРУМЕНТАЛЬНЫЕ СИСТЕМЫ

будь то сохранение в оперативной БД или проверка условий возникновения тревог (рис. 5).

На последнем этапе среда разработки RTWin генерирует СКУ в виде исход-

позволяет создавать собственные библиотеки. Интерфейс с оператором предусматривает использование как русского, так и любого другого языка. RTWin не накладывает никаких прак-

тически ощутимых

СКУ. Количество то-

чек дополнительной

обработки данных

не ограничено. В со-

ставе СКУ предпола-

гается наличие любого числа рабочих

мест операторов (пользователей) и

возможность разграничения прав до-

ступа к элементам управления. Среда разработки генерирует СКУ как набор исполняемых модулей и исходных текстов программ на языке Си.

Конфигурация

Конфигурация предусматривает любое распределение модулей по узлам ONX-сети непосредственно перед за-

> пуском СКУ. С помощью конфигурирования панели управления можно продублировать на нескольких узлах сети одновремен-

Тревоги

RTWin позволяет оперативно выявлять аварийные и предаварийные ситуации (тревоги) за счет неограниченного количества

уровней контроля любого из параметров технологического процесса, а также предусматривает автоматическую обработку тревог, включающую оповещение оператора, контроль восприятия оператором сигнала оповещения, выдачу заданного управляющего воздействия.

Оперативная БД

RTWin обладает высокопроизводительной оперативной БД, позволяющей сохранять данные с частотой около

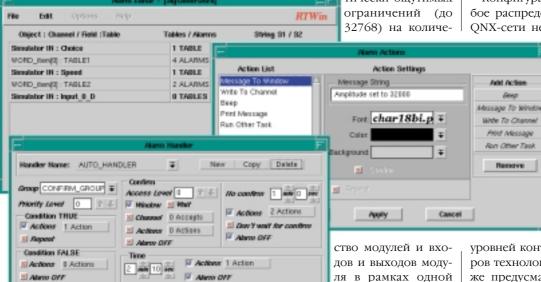


Рис. 5. Фрагмент среды разработки RTWin: редактор тревог и описание разработки тревоги

Apply

ных текстов программ и готовых к запуску модулей (рис. 5). Изначально

Done

конфигурация предусматривает запуск всех модулей на локальном компьютере. А для того чтобы задать распределение модулей СКУ по узлам локальной сети, используются дополнительные конфигурационные файлы запуска

Note the

Возможности?... Возможности! Разработка

RTWin позволяет в короткие сроки создавать СКУ любой сложности в режиме визуального проектирования (рис. б). При этом разработку можно вести одновременно на нескольких

рабочих местах. RTWin предоставляет разработчику библиотеки алгоритмов обработки и моделирования данных и элементов графического интерфейса и вместе с тем

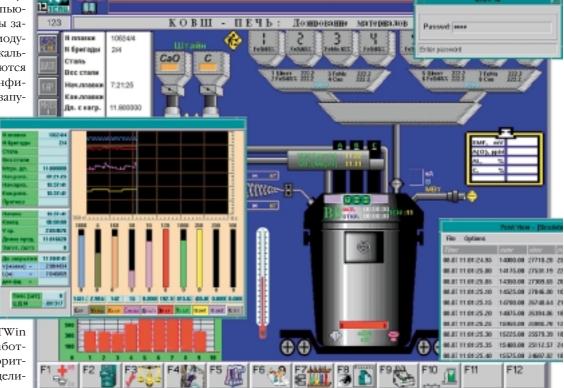


Рис. 6. Пример рабочего места оператора СКУ. Рисунок любезно предоставлен отделом АСУ Молдавского металлургического завода, г. Рыбница

1000 записей в секунду на локальном компьютере 486DX4-100. Предусмотрено сохранение данных, проходящих по каналам, тревог и системных событий, действий пользователя. Специальный конвертор позволяет экспортировать файлы оперативной БД RTWin в формат Sybase Anywhere.

Драйверы

RTWin имеет драйверы для наиболее распространенных типов оборудования различных производителей (Advantech, Octagon Systems). Этот список постоянно пополняется. Кроме того, существует практика разработки драйверов под заказ.

Пользователи СКУ и разграничение прав доступа к управлению

RTWin позволяет задавать любое количество пользователей СКУ, обладающих соответствующими паролем и уровнем доступа. Доступ к информации и элементам управления осуществляется с учетом индивидуального уровня до-

ступа пользователя. В период эксплуатации СКУ RTWin в соответствии с принципом «авторизованного» вмешательства санкционирует доступ того или иного пользователя к информации и элементам управления, фиксируя моменты регистрации пользователя (login и logout), а также при необходимости и все его действия.

Просмотр текущих данных

В период работы СКУ с помощью специальной утилиты можно просмотреть данные, проходящие по каналам, в виде таблиц и графиков. Это средство значительно упрощает отладку системы.

Простота освоения

Наличие документации на русском языке обеспечивает простоту в освоении пакета. В документации подробно рассмотрены примеры создания приложений. Внимательное изучение примеров позволит в кратчайшие сроки приступить к разработке собственной СКУ в RTWin. Кроме того, постоянно работает электронная линия, по которой

можно задать любой вопрос, связанный c RTWin

А судьи кто?

http://www.swd.ru

RTWin на сегодняшний момент имеет больше десятка применений в различных отраслях промышленности. Среди наиболее крупных предприятий, использующих пакет, — Молдавский металлургический завод в г. Рыбница, где RTWin установлен и работает на полутора десятках узлов в рамках СКУ «Ковш-печь», «Машина непрерывного литья заготовок» и «Печь для нагрева заготовок» (рис. 6). В «АСУ НефтеГаз» в г. Сургут на базе RTWin разработана СКУ удаленными терминалами нефтяного промысла. ●

К. Макарьев — менеджер по продажам SWD RealTime Systems Ltd. 196135, Санкт-Петербург, пр. Ю.Гагарина, 23 Телефон: (812) 293-0260 Факс: (812) 293-0497 E-mail: rtwin@swd.ru